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ORNL

@ Scientific Simulation Issues...

Fundamental Parallel Programming

— Synchronization, Coordination & Centrol

Distributed Data Organization
— Locality, Latency Hiding, Data Movement

Long-Running Simulation Experiments
— Monitoring, Fault Recovery

Massive Amounts of Data / Information
— Archival Storage, Visualization

Too Much Computer, Not Enough Science!
— Need Some Help...
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Potential Benefits from
Computer Science Infrastructure:

* On-The-Fly Visualization
= Interactive Access to Intermediate Results
= Attached as Needed, Minimize Overhead
 Computational Steering
= Apply Visual Feedback to Alter Course / Restart
= “Close Loop” on Experimentation Cycle
* Fault Tolerance
= Automatic Fault Recovery / Load Balancing
= Keep Long-Running Simulations Running Long
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(Collaborative, User Migration, User Library for Visualization and Steering)

* Collaborative Infrastructure for Interacting
with Scientific Simulations:

= Run-Time Visualization by Multiple Viewers
— Dynamic Attachment, Independent Views

— Coordinated Computational Steering
— Model & Algorithm Parameters

— Heterogeneous Checkpointing / Fault Tolerance
— Automatic Fault Recovery and Task Migration

= Coupled Models...
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Collaborative Combustion Simulation

Methana Flama ]

¥Vl Remote Steering

Hultip!le =
\I"-e:wr_ts

. - Allews Remate Experts to¥iew and Infloence

the Simulation

“1Drive sisulatian to interesiang solitiens
STChose ke loopion simulste=revise-simubale cpche

|.H:||| i S I i i 3 ; : “IEnhance conver gence of rumerical akgorithms
E nE oy i % " FAnobd watting compartar resources on uninteresting

ey : . WAL . '."__: 2 it . . or Incarrect ‘Exper menis
~ Physical Resources of e = Al e : ; :
: Multip[t DOE I.ahﬂm'tmfts

Col!abnratwe “If'ewmg and Steermg Enabfe:; "What ﬂ"" Cnmputatmnal SEIEI'I:E

ORNL Kohl/2003-5



CUMULYVS Visualization Features

— Interactive Visualization

* Simple API for Scientific Visualization

* Use Your Favorite Visualization Tool

— Minimize Overhead When No Viewers
* One Message Probe, No Application Penalty

= Send Only Viewed Data

* Partial Array / Lower Resolution

— Rect Mesh & Particle Data .

— Common (HPF) Data Distributions
* BLOCK, CYCLIC, EXPLICIT, COLLAPSE

= Soon Unstructured, Sparse & Adaptive Meshes...
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Multiple Simultaneous Views

Temperature
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ORNL

Multiple Distinct Views
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CUNVIUL YD Arcinitecuurce
coordinate the consistent collection and
dissemination of
information to / from parallel tasks to multiple
lo\c,ailewers

person
using custom

remote person
using virtual reality

GUI | };;;:.I interface

Unix Host A = B /

e

exists in 3 pieces:
application library,
viewer library,
and separate fault
recovery daemon

Unix Host C using AVS

remote person

NT Host B

interact with distributed / parallel application or simulation
supports most target platforms (PvM / MPI, Unix / NT, etc.) Kohl/2003-9



Instrumenting Programs for CUMULVS

« CUMULVS Initialization ~ One Call (Each Task)
= Logical Application Name, # of Tasks

» Data Fields (Visualization & Checkpointing)
— Local Allocation: Name, Type, Size, Offsets
— Data Distribution: Dim, Decomp, PE Topology

« Steering Parameters
= Logical Name, Data Type, Data Pointer

e Periodic CUMULYVS Handler

= Pass Control for Transparent Access / Processing

* Typically 10s of Lines of Code...
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Local Allocation Organization
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CUMULYVS Particle Handling

 Particle Data Fundamentally Different

— Data Fields Encapsulated in a Particle Container _

— Explicit Coordinates Per Particle 2

X,Y,Z
int foo;
double bozo[10];

 Particle-Based Decomposition API floa bar:

— User-Defined, Vectored Accessor Routines

* Viewing Particle Data _
— AVS Module Extensions .0
— Tcl/Tk Slicer Particle Mode e
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CUMULYVS
Steering Features

 Computational Steering
= API for Interactive Application Control
 Modify Parameters While (Long) Running
* Eliminate Wasteful Cycles of Ill1-Posed Simulation

* Drive Simulation to More Interesting Solutions

* Enhance Convergence of Numerical Algorithms

* Allows “What If” Explorations
* Closes Loop of Standard
Simulation Cycle
* Explore Non-Physical Effects...
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Coordinated Steering

* Multiple, Remote Collaborators
* Simultaneously Steer Different Parameters

= Physical Parameters of Simulation
= Algorithmic Parameters ~ e.g. Convergence Rate

* Cooperate with Collaborators
— Parameter Locking Prevent Conflicts

— Vectored Parameters...

+ Parallel / Distributed Simulations H

— Synchronize with Parallel Tasks
= All Tasks Update Parameter in Unison
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Parallel Model Coupling in CUMULVS

 Natural Extension to CUMULVS Viewer Scenario

* Translate Disparate Data Decompositions
= Parallel Data Redistribution Among Shared Data Fields

— stv_couple fields( fieldID, appname, fieldname, ... );

= Fundamental Model Coupling Capability

— Next Step ~ Interpolation in Space & Time, Units Conversion...

E.g. Regional Climate Assessment

m é CUMULVS g

Temperature
ORNL Ocean




CUMULYVS Fault Tolerance Features

* Application Fault Tolerance

= Automatic Detection and Recovery from Failures

e User Directed Checkpointing
= User Decides What / Where to Checkpoint
— Minimizes Amount of Stored Data

* Heterogeneous Task Migration

= Restart Tasks on Heterogeneous Hosts
= Restart 1s Automatically Repartitioned 1f Host Pool is of
Different Size or Topology (Yikes!)
* Avoids Synchronizing Distributed Tasks
= Asynchronous Checkpoint Collection and Fault Detection

= Minimize Intrusion of Checkpoint / Restart
ORNL Kohl/2003-16



Run-Time Fault Monitor

e One Checkpointing Daemon
(CPD) Per Host

= Ckpt Collector / Provider

— Run-Time Monitor

= Console for Restart / Migrate

* CPDs Comprise Fault-
Tolerant Application...
— Handle Failure of Host / CPD
= Coordinate Redundancy Replacement 7
) host added on Spare Host
— Ring Topology N
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Rollback Versus Restart...

» Rollback Recovery:
= Only Replace Failed Tasks, “Roll Back” the Rest
= Elegant & Cool, But You Must...

— Monitor ALL Communication for Restart Notification
— Unroll Program Stack, Reset Comm & File Pointers...

= Necessary for High Overhead Restart Cases

* Restart Recovery:
= “Genocide” ~ Kill Everything & Restart All Tasks
— Simple Approach, No Additional Instrumentation
= Not as Efficient a Recovery in All Cases...

ORNL Kohl/2003-18



Checkpoint Data Collection

« Data from Each Local Task Collected/Committed
— stv_checkpoint () ;
* Invoke When Parallel Data / State “Consistent”. ..
= Highly Non-Trivial in General! (Chandy/Lamport)
— Straightforward for Most Iterative Applications
— Save Checkpoint at Beginning or End of Main Loop
* No Automatic Capturing of Other Internal State:

= Open Files, I/0, Messages-in-Transit. ..

= CUMULVS Assumes User Handles This Recovery

— Can Be Done Manually Using Saved Checkpoint State

— Future Extensions to Assist...
ORNL Kohl/2003-19



Manual Software Instrumentation
 SPDT 98 Case Study ~ SW Instrumentation Cost

Seismic: | Wing Flow:
Original Lines of Code 20,632 2,250

Vis / Steer System Init

Vis / Steer Variable Decls 48 IR
CP Restart Initialization 21 12
CP Rollback Handling 41 34
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Checkpointing Efficiency
 SPDT 98 Case Study ~ Execution Overhead

Seconds per Iteration

Seismic - No Checkpointing
Seismic - Checkpoint for Restart
Seismic - Checkpoint for Rollback

Wing - No Checkpointing
Wing - Checkpoint for Restart
Wing - Checkpoint for Rollback

(Checkpointing Every 20 Iterations ~ every 15 sec to 4 mins...!)

Seismic Overhead: 4-14% Restart, +1-3% Rollback.
Wing Overhead: 8-15% Restart, +0-2.5% Rollback.
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An Aside: PVM vs. MPI

* Comparison of Features and Philosophy

* Which One to Choose?
= Both Useful for Given Application Needs...

e CUMULVS Issues

= Internals and General Usage
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Sge=\’ PVM (Parallel Virtual Machine)

» Use Arbitrary Collection of Networked
Computers as a Single, Large Parallel Computer

= Workstations, PCs (Unix or NT) ~ Clusters
— SMPs, MPPs

e Programming Model & Runtime System

— Message-Passing ~ Point-to-Point, Context,
Some Collective Operations, Message Handlers

= Resource & Process Control, Message Mailbox,
Dynamic Groups, Application Discovery

— Fault Notification

ORNL Kohl/2003-23



Message Passing Interface
Standard

» Library Specification for Message-Passing

= Designed By Broad Committee of Vendors,
Implementors and Users

= High Performance on Massively Parallel Machines
and Workstation Clusters

* Comprehensive Message-Passing System
= Point-to-Point, Collective, One-Sided
= Groups/Communicators, Topology, Profiling, I/0

= Some Process Control (MPI-2 ~ MPI SPAWN)
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PVM vs. MPI: Difterent Goals

« MPI
— Stable Standard, Portable Code

= High Performance on Homogeneous Systems

 PVM
= Research Tool, Robust, Interoperable

= Good Performance on Heterogeneous Systems
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PVM vs. MPI: Daifterent Philosophies

« MPI
— Static Model (~ MPI SPAWN in MPI-2...)
= “Rich” API (MPI-1/128, MPI-2 / 288)
= Performance, Performance, Performance...
- PVM
= Dynamic Model
= “Simple” API (PVM 3.4/ 75)
= Flexibility (& Performance)
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Portability vs. Interoperability

 Portable:

— Re-compile Source Without Modification on a
Different System, with C, C++, Fortran Support

= True of Both MPI and PVM.

* Interoperable:

ORNL

= Executables on Different Systems Communicate
— PVM ~ Yes, MPI ~ Sometimes (Not Required)
= Different MPI Implementations? IMPI ~ Soon...

— Language Interoperability?
— PVM ~ Yes, IMPI ~ Soon...
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Performance vs. Flexibility

* To Be Flexible, You Must Pay the Price...
» Heterogeneity Overheads:

— Data Conversion, Network Protocol Selection,
Extra Message Headers (on top of Native Comm)...

e Choose the Lowest Common Denominator?
= Not the Best on Any System.

* Performance Dictates Locally Optimal Solution.
= Lose Interoperability...
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Interesting Result

* You can build an MPI implementation that
supports interoperability and system dynamics

across different systems / languages (some
already do ~ Mpich, LAM, IMPI...).

* But, given all these conditions:
= It Would Perform About the Same as PVM!!
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Supporting MPI Applications in CUMULVS

CUMULVS Works with MPI Applications! ©

But MPI Doesn’t Have Everything We Need (Internally)
= Static Model, Minimal Operating Environment

= No Name Service / Database, Fault Recovery / Notification?
= MPI SPAWN()...? Proxy Server for Viewer Attachment?

« Existing CUMULVS Solution:

= Applications Communicate Using MPI or PVM or ???
= CUMULYVS Viewers / CPDs Still Attach Using PVM

e Possible “Reduced-Functionality” MPI Version...?
= Currently Under Development. ..
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CCA Future CUMULYVS Plans (1 of 3)

Common Component Architecture

o CCA “MxN” Parallel Data Redistribution
= Builds on CUMULYVS Viz & Coupling Protocols

— CUMULVS & PAWS (LANL) Being Integrated
— “MxN” Generalizes Capabilities of Both Systems

* Point-to-Point versus Persistent Connections (a la Viz)

— CUMULYVS Complements PAWS Coupling Work
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Future CUMULYVS Plans (2 of 3)
CUMULVS as a Foundry to Forge New Technology

High-Performance Visualization

» Full Parallel Integration of Pipeline
» CCA “MxN” - “MxNxPxQxR”!

——
S
| | Mining &
Data Mgt Analysis

3y s Terabyte+
Proposed “Fully Connected
. . . Data
User-Centric Simulation Cycle Reorg
ORNL For Viz

Reduction & Filtering

Visualization Scalable Visualization Cache Architecture

Parallel
Render
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Future CUMULYVS Plans (3 of 3)
Feature Extensions...

* Application Interface:

— Assist Manual Instrumentation of Applications
— GUI, Pre-Compiler...

e Checkpointing Efficiency:
— Tasks Write Data in Parallel / Parallel File System?
— Redundancy Levels, Improve Scalability...
 Portability:

= Other Messaging Substrates
— Reduced Functionality / Direct Connect for CCA & MPI
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CUMULYVS Summary

Interact with Scientific Simulations

— Dynamically Attach Multiple Visualization Front-Ends
= Steer Model & Algorithm Parameters On-The-Fly

= Automatic Heterogeneous Fault Recovery & Migration

Future Opportunities
— Couple Disparate Stmulation Models
= Integrate as “MxN” Component in CCA
= Application Instrumentation GUI / Pre-Compiler

http://www.csm.ornl.gov/cs/cumulvs.html
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Seismic Example ~ 2D (Tcl/Tk)

Seismic Example ~ 3D (AVS)

Air Flow Over Wing Example ~ 3D (AVS)
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